Geometric Modeling

Exercise 1 (Gram-Schmidt Orthogonalization):
[2+2+1 points]
a. Calculate an orthogonal basis for \mathbb{R}^{3} from the vectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right), v_{3}=\left(\begin{array}{l}
1 \\
0 \\
3
\end{array}\right)
$$

using Gram-Schmidt Orthogonalization.
b. Calculate an orthogonal basis for the functional basis [$1, x, x^{2}$] on the interval $[0,1]$ using Gram-Schmidt Orthogonalization. (Remember to use the inner product for function spaces)
c. Sketch the resulting functions from b.

Exercise 2 (Basis Functions):
a. Write down the system of linear equations that has to be solved to obtain the least-squares approximation of $f \in V$ on using the basis functions $b_{1}, b_{2}, \cdots, b_{n} \in V$.
b. How does a. simplify if $b_{1}, b_{2}, \cdots, b_{n}$ form an orthogonal basis?
c. Find the least-squares approximation of $\frac{1}{2} x^{3}-\frac{1}{2} x$ on the interval $[0,1]$ using functional basis $\left[1, x-\frac{1}{2}, x^{2}-x+\frac{1}{6}\right]$.

Exercise 3 (Eigenvectors and-values):
[2+2+3+1+2 points]
a. Show that $u \in \mathbb{R}^{n}$ is an eigenvector of the matrix $u u^{t}$ and has an eigenvalue of $\|u\|^{2}$.
b. Show that $u u^{t}$ has only one non-zero eigenvalue.
c. Given a vector $v \in \mathbb{R}^{n}$ with $\|v\|^{2}=1$ show that $\mathbf{I}-v v^{t}$ has two eigenvalues with value 1. (Hint: What are eigenvectors of I ?)
d. Given eigenvectors $e_{1}, e_{2}, e_{3} \in \mathbb{R}^{3}$ with corresponding eigenvalues d_{1}, d_{2}, d_{3}, how do you reconstruct the source matrix $M \in \mathbb{R}^{3 \times 3}$ from which they were calculated?
e. The Fibonacci sequence can be written as:

$$
\binom{F_{n}}{F_{n+1}}=\left(\begin{array}{cc}
0 & 1 \\
1 & 1
\end{array}\right)^{n}\binom{F_{0}}{F_{1}}
$$

Derive a closed form solution for the nth Fibonacci number F_{n}.
(Hint: Diagonal form $T D T^{-1}$ of $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$ is $T=\left(\begin{array}{cc}1 & 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2}\end{array}\right), D=\left(\begin{array}{cc}\frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2}\end{array}\right)$).

